

"Le nuove sfide della ricerca oncologica: verso una partnership tra Enti Pubblici e Industria nella regione Lazio"

Roma, 17 maggio 2017 Regione Lazio - Sala Tirreno

I biomarcatori nei tumori solidi

Mauro Biffoni Dipartimento di Oncologia e Medicina Molecolare Istituto Superiore di Sanità

Biomarcatore

Indicatore misurabile che è usato per distinguere con precisione, riproducibilità e obiettività sia uno stato biologico nomale da uno patologico sia la risposta ad uno specifico intervento terapeutico

Modificato da: Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework.

Clin. Pharmacol. Ther. 69, 89–95 (2001)

Quali altre caratteristiche dovrebbe avere un buon biomarcatore ?

- Facilità di accesso al campione
- Possibilità di ripetere l'esame nel tempo

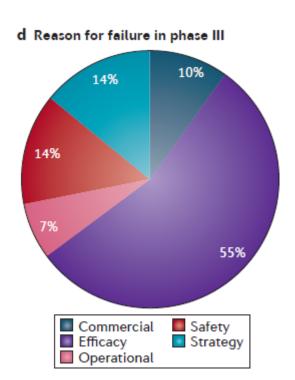
Distinguiamo diversi tipi di biomarcatori?

- Prognostici
- Farmacodinamici
- Predittivi
- Surrogati
- Per il monitoraggio di efficacia

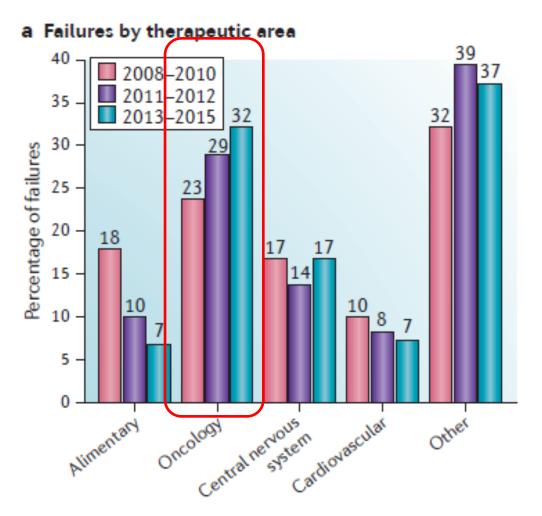
Perché i biomarcatori sono necessari

- Aumentare la probabilità che uno studio clinico evidenzi l'efficacia di un nuovo farmaco
- Identificare i pazienti che hanno una ragionevole probabilità di avere un beneficio dalla terapia / evitare di esporre a potenziale tossicità pazienti che non la abbiano
- Indirizzare le risorse disponibili per terapie generalmente molto costose in maniera costo efficace

Fallimento di studi clinici di fase II e III


Studi clinici falliti nel periodo 2013-2015: 218.

Dei 174 per i quali è stata comunicata la ragione sono falliti per:


- Mancato raggiungimento degli obiettivi di efficacia: 52 %
- Mancato rispetto dei requisiti di sicurezza:

In quasi un terzo dei casi erano studi di oncologia

Dati da Harrison RK. Nature Rev Drug Discovery 15: 816-818; 2

Andamento temporale

Harrison RK. Nature Rev Drug Discovery 15: 816-818; 2016

Ragioni del fallimento

- Bersaglio sbagliato
- Molecola sbagliata

Biomarcatore farmacodinamico

Biomarcatori

• Sbagliato parametro clinico misurato rognostici o surrogati

Sbagliata selezione dei pazienti

Biomarcatore predittivo

Sviluppo di biomarcatori

Per lo sviluppo di un biomarcatore si devono avere dati

FAIR

- Findable
- Accessible
- Interoperable
- Reusable

Fasi dello sviluppo di biomarcatori

- The pre-validation process that defines the intended purpose of the biomarker, considering pre-analytical variables and bioanalytical method feasibilit
- The exploratory validation process that assesses the basic assay performance
- The **advanced validation** process that characterizes the formal performance of the assay with regard to its intended use
- The in-study validation process that ensures that the assay method performs robustly across studies according to predefined specifications and facilitates the establishment of definitive acceptance criteria

Sviluppo di un biomarcatore

Box 2 | Considerations for procedure standardization

Pre-analytical standardization

- Patient factors: anaesthetic agents; hydration; stress responses; drugs; concomitant diseases or co-morbidities; tissue ischaemia; sample-processing delays (phosphorylation); and other unknown factors
- Tissue factors: collection (device/process, tissue versus serum based specimen, sample volume, contamination); fixation (type, time, penetration); processing (methods, times for each step, temperature); storage; and stability and integrity

Analytical standardization

- Tissue factors: analyte differences (DNA, RNA, protein); antigen retrieval (for immunohistochemistry); antibody variability; detection reagents (chromagens); inconsistencies relating to kits and automation; control selection; and quality control
- Scoring systems for staining: intensity; extent; topography; nonlinearity of methodologies; and computerized image analysis ('precise measurement of the imprecise')

Post-analytical standardization

- Effects of volume of testing by laboratories: high-volume testing laboratories, such as central laboratories, usually have more expertise and proficiency than low-volume local laboratories
- Data interpretation: dichotomous variables; continuous variables (cut-points relevant to clinical decisions); and reproducibility
- Collaborative role of professional pathology organizations: at the international level, to define standards; at the local level, to facilitate implementation of these standards

FDA-approved targeted agents with demonstrated activity and an effective predictive biomarker of efficacy in solid cancers*

Year of approval	Drug	Clinical biomarker(s)	Target(s)	FDA-approved indication(s)	Patient population positive for biomarker	RR to treatment
1998	Trastuzumab	HER2 overexpression	HER2	HER2-positive mBC: single agent in second-line therapy, and in combination with paclitaxel in first-line treatment	18–20% (HER2- positive population)	15–50%1 ^{45,146}
2003	Imatinib	KIT (CD117)	KIT, ABL and PDGFR	In unresectable and/or KIT-positive mGIST	CD117-positive: 95% <i>KIT</i> -mutation- positive: 80%	45-83%147,148
2004	Cetuximab	EGFR-protein expression‡	EGFR	With irinotecan or as single agent (2007) for EGFR-positive mCRC refractory to irinotecan	60–80%	11–55% ^{149,150}
2006	Trastuzumab	HER2 overexpression	HER2	With adjuvant treatment for node- positive, HER2-positive BC	18–20% (HER2-positive population)	38% DFS increase ^{145,151}
2006	Panitumumab	Wild-type§ KRAS (specifically at codons 12 or 13 in exon 2)	EGFR	EGFR-expressing mCRC with disease progression on chemotherapy regimens	40–60%	17–58%92,152
2007	Lapatinib	HER2 overexpression	HER2; EGFR	In combination with capecitabine in pretreated HER2-positive mBC	18–20% (HER2-positive population)	24-41%153,154
2008	Imatinib	COL1A1-PDGFB fusion	KIT, ABL and PDGFR	For COL1A1—PDGFB gene-fusion- negative metastatic DFSP (or DFSP with unknown mutation status), and as adjuvant therapy in KIT-positive GIST	>95%	36–100% ^{155,156}
2009	Gefitinib	EGFR-activating mutations	EGFR	NSCLC with <i>EGFR</i> mutations that respond to or had prior response to gefitinib (limited approval by FDA)	10–15% of white patients and 30–35% of East Asian patients	37–78% ^{157,158}

Year of approval	Drug	Clinical biomarker(s)	Target(s)	.,	Patient population positive for biomarker	RR to treatment
2010	Lapatinib	HER2 overexpression	HER2; EGFR	With letrozole in postmenopausal women with hormone-receptor-positive and HER2-positive mBC	18–20% (HER2- positive population)	8-48%159,160
2010	Trastuzumab	HER2 overexpression	HER2	With cisplatin and fluoropyrimidine in the first-line treatment of HER2-positive metastatic GC and GEC	7–34%	47% ¹⁶¹
2011	Crizotinib	EML4-ALK translocation	ALK; MET	ALK-positive locally advanced or metastatic NSCLC	1–7%	50-65% 162,163
2011	Vemurafenib	BRAF V600E mutation	BRAF	Metastatic melanoma with BRAF V600E mutation	80–90% of <i>BRAF</i> -mutated population	48–57% 164,165
2012	Cetuximab	Wild-type§ KRAS	EGFR	In combination with FOLFIRI for the first-line treatment of <i>KRAS</i> -wild-type patients with EGFR-positive mCRC	40–60%	47–61% ^{166,167}
2012	Pertuzumab	HER2 amplification	HER2	In combination with trastuzumab and docetaxel as first-line therapy for HER2-positive mBC	18–20% (HER2- positive population)	24–63% ^{168,169}
2013	Ado-trastuzumab emtansine	HER2 overexpression	HER2	HER2-positive mBC with prior exposure to trastuzumab and/or a taxane	18–20% (HER2-positive population)	26–64% ^{170,171}
2013	Afatinib	EGFR exon 19 deletions or exon 21 mutation (L858R)	EGFR, HER2 and HER4		45% with <i>EGFR</i> s exon 19 deletion and 41% with <i>EGFR</i> exon 21 mutation	56–67% ^{172,173}
2013	Ceritinib	ALK rearrangement	ALK	ALK-positive NSCLC that progressed during or after treatment with crizotinib	2–5%	56%174,175

Year of approval	Drug I	Clinical biomarker(s)	Target(s)	FDA-approved indication(s)	Patient population I positive for biomarker	RR to treatment
2013	Erlotinib	EGFR exon 19 deletion or exon 21 mutation (L858R)		First-line treatment of metastatic NSCLC with <i>EGFR</i> exon 19 deletions or exon 21 mutations	45% with <i>EGFR</i> s exon 19 deletion and 41% with <i>EGFR</i> exon 21 mutation	54–83% ^{176,177}
2013	Pertuzumab	HER2 amplification	HER2	As neoadjuvant treatment with trastuzumab and docetaxel for HER2 positive advanced, inflammatory or early-stage BC	18–20% (HER2- - positive population)	24–62% ^{178,179}
2013	Trametinib	BRAF V600E/K mutations	MEK	Unresectable/metastatic BRAFV600E/K-mutated melanoma	BRAFV600E- mutated: 80–90%; BRAFV600K- mutated: 20%	22–25% ^{180,181}
2014	Dabrafenib	BRAF V600E/K mutations	BRAF	With trametinib for metastatic melanoma with BRAF V600E/K mutations	BRAFV600E- mutated: 80–90%; BRAFV600K- mutated: 20%	31-76% 180,182,183

de Gramont, A. et al. Nat. Rev. Clin. Oncol. 12, 197–212 (2015)

Box 1 | Specific requirements for a biomarker for immune checkpoint blockade

What is so remarkable about immune checkpoint blockade?

- Immune checkpoint blockade works in a minority of patients for many types of cancers^{2-6,8-11}.
- When it works, it often works really well, with prolonged responses for many years 16,121. By contrast, in most cancers, other treatments typically are effective for only a limited time.
- Responding tumours can first show increased size on imaging before they start to respond (pseudoprogression)¹⁵.
- Immune checkpoint blockade can have severe, life-threatening side effects¹³.
- These types of drugs are extremely expensive¹⁴.
- Although the targets are defined, the exact mechanism of action of these compounds is incompletely understood.
- Combinations of immune checkpoint blockade may augment response², but the rationale for combination therapies is incompletely understood.

What are the necessary characteristics of a biomarker for immune checkpoint blockade?

- The biomarker needs a very high negative predictive value (that is, the biomarker should at least point out who will certainly not respond).
- Although a single pre-treatment biomarker would be ideal, a biomarker that could be used early in treatment would still be of great value.
- For example, response prediction during the first (or second) cycle would enable the identification of patients who may benefit from continuing or not; pseudoprogression would be readily identified; financial burden and potential toxicity would be limited as only one or two administrations of the antibody will be required, and the biomarker may identify new targets for intervention^{39,117}.
- An ideal biomarker would be non-invasive; that is, repeated biopsies would not be required.
- An ideal biomarker would be valid and reliable in different cancer populations.

Sviluppi futuri

- Presente
 - Biopsia del tumore

- Futuro
 - Acidi nucleici circolanti
 - Cellule tumorali circolanti